How we invented jet fuel—without knowing what we were doing

Harold Schobert
Professor of Fuel Science
Penn State University
Nottingham University, May 2011
Frank Whittle—
The Father of Jet Propulsion
The Jet Engine

Diagram showing the components of a jet engine:
- Fuel Spray
- Igniter
- Turbine
- Air Intake
- Compressor
- Combustion Chamber
- Nozzle
The Gloucester Meteor
The MIG-25 “Foxbat”

- In the mid-1980s a Soviet pilot defected with his MIG-25, flying it to the supposed limit of its operational range.
- Military analysts were surprised to find the fuel tanks nearly half full.
The key is in the fuel

- Most conventional jet fuels, made from petroleum, are rich in alkanes.
- The Soviet fuel was rich in cycloalkanes (naphthenes)—carbon atoms linked in rings.
- Cycloalkanes have higher volumetric energy density (MJ/L) than corresponding alkanes.
Naphthenic fuels from coal

- Most coals are thought to consist of contain abundant aromatic structures linked by short aliphatic or heteroatomic groups.
- If these aromatic structures could be chemically “cut” out of coal, and then hydrogenated, it should be possible to make naphthenic fuels from coals.
Thermal Management

- High-performance aircraft generate enormous amounts of excess heat:
 - Friction heating in the atmosphere
 - Waste heat from the engines
 - Compressor outlet air
- Heat needs to be controlled to protect electronics, hydraulics, and people.
- The simplest approach is to use fuel as a heat sink, before it goes to the engines.
- *But*—most hydrocarbon fuels decompose to solid carbon at relatively low temperatures, ≈325°.
- Decomposition leads to maintenance problems (and possibly worse...)

Plugged afterburner fuel lines

Carbon deposition in fuel lines represents a costly maintenance problem.
Penn State was approached by a U.S. Congressman to see if there was anything PSU could do to make jet fuel from coal.

We already had a white paper (by HHS) on the possibilities of making naphthenic, high volumetric energy density fuels from coal.

Our JP-900 project began in 1989 with a $90,000 (≈£55,000) contract from the U.S. Department of Energy.

At the time we started this program, none of us had ever even seen jet fuel.
The JP-900 Challenge

- Development of a fuel with good heat sink capabilities, especially for advanced applications.

- The challenge: develop a fuel that would resist decomposition at 900°F (480°C) for two hours.
The seminal experiment

- The difference must lie in molecular composition.
Why is coal-derived jet fuel more stable?

- We tested ≈60 pure compounds, and learned that cycloalkanes and the related hydroaromatics have higher thermal stability than do alkanes.
- Coal-derived jet fuel turned out to be rich in cycloalkanes and hydroaromatics—its composition is inherently more stable than a conventional petroleum-derived fuel.
Conventional coal-to-liquids technologies

Indirect liquefaction: Coal is converted to a mixture of CO and H$_2$ (synthesis gas). In a separate step, synthesis gas is converted to liquids (Fischer-Tropsch synthesis). This process destroys the molecular structure of the original coal.

Direct liquefaction: Coal is reacted directly with hydrogen to produce a synthetic crude oil. This product is then refined further, into clean liquid fuels. Vestiges of the coal structure are preserved in the liquid.
The temper of the times

- By the time we had figured out the “recipe” for a high thermal stability, naphthenic jet fuel, it was the early to mid-1990s.
- At that time, interest in coal liquefaction technologies in public and private sectors of the U.S. was zero.
- We knew we had to find another way.
The concept of a “coal-based” fuel

- Lack of interest in coal liquefaction in the 90s was a blessing in disguise. We had the opportunity to think of new approaches.
- A “coal-derived” fuel is one made entirely from coal. A “coal-based” fuel would have the thermally stable molecules from coal, but also components from petroleum.
- Making a coal-based fuel could rely on existing refinery infrastructure, meaning lower capital investment and quicker time to completion.
Making Coal-Based Fuel

- The primary route selected was to use a liquid commonly available in oil refineries (light cycle oil) to extract the desired molecular components from coal.
- A secondary process would add coal to refinery units called delayed cokers. (It never hurts to have a “Plan B.”)
Crushed and ground coal → Solvent Extraction → Solid/Liquid Separation → Solvent Stripping → Stage 1 Hydrotreating

Unextracted coal and ash → Solid/Liquid Separation

H_2 → Stage 1 Hydrotreating → H_2S → Stage 2 Hydrotreating Aromatics Saturation

H_2 → Stage 2 Hydrotreating Aromatics Saturation

Fractionation

Gasoline → Jet fuel → Diesel fuel → Fuel oil
Parallel Pathways

- What if...we invested a lot of effort in converting coal, and it turned out that the product wasn’t any good?
- We needed a way to simulate the likely final product *simultaneously* with figuring out how to make it.
- We chose a commercially available, coal-derived material, refined chemical oil, to use as a surrogate for our eventual coal product.
The RCO:LCO Approach
Pilot-scale Production of Prototype JP-900

- Mixing, hydrotreating, and fractionation of JP-900 prototypes was done by Intertek-PARC, Harmarville, PA, USA.
- Two campaigns were run: 10 barrels, then 100 barrels.
Partial Comparison of JP-8 and Prototype JP-900

<table>
<thead>
<tr>
<th></th>
<th>JP-8 spec.</th>
<th>JP-900 (actual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash point, °C</td>
<td>38 (min.)</td>
<td>61</td>
</tr>
<tr>
<td>Viscosity, cSt, –20°C</td>
<td>8.0 (max.)</td>
<td>7.5</td>
</tr>
<tr>
<td>Freezing pt, °C</td>
<td>–47 (max.)</td>
<td>–65</td>
</tr>
<tr>
<td>Smoke pt., mm</td>
<td>19 (min.)</td>
<td>22</td>
</tr>
</tbody>
</table>
Partial Comparison of JP-8 and Prototype JP-900

<table>
<thead>
<tr>
<th></th>
<th>JP-8 spec.</th>
<th>JP-900 (actual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur, wt. %</td>
<td>0.3 (max.)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Aromatics, %</td>
<td>25 (max.)</td>
<td>1.9</td>
</tr>
<tr>
<td>Thermal stab.@ 260°C</td>
<td>25 mm (max.)</td>
<td>0</td>
</tr>
<tr>
<td>Calorific value, Btu/lb</td>
<td>18,400</td>
<td>18,401</td>
</tr>
</tbody>
</table>
The light dawns….

- But… *it has to!* Regardless of thermal management issues, JP-900 still has to be jet fuel!
- What we had created was a fuel made largely from coal that could be a replacement for petroleum fuels.
The T-63 Engine Test

- Overall emissions similar to, or only slightly greater than, JP-8.
- Lower volumetric fuel flow rates, but slightly higher mass flow rates.
- Comparable with JP-8 in most respects.
The Williams International Test

- Totally comparable with Jet-A.
We found that JP-900 could be a potential coal-based “drop-in” replacement for jet fuels from petroleum.

Repeated requests were made to learn the engineering basis for the 900°F/2 hours specification. Finally the secret was revealed…

The Air Force had made the numbers up!
Batch Reactor Stability of JP-900

Comparison of stressed jet fuels

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JP8</td>
<td>Before</td>
<td>After</td>
<td>JP8+100</td>
<td>Before</td>
<td>After</td>
</tr>
</tbody>
</table>

Fuels were stressed under nitrogen for 2 hours at 900°F. Solid deposition is 7–8% in JP-8 and JP-8+100; 0.0% in JP-900.
Flow Reactor Stability of JP-900

More significant carbon deposition due to thermal break down of the fuel.

Penn State's First Prototype JP-900

JP-8

- Neat JP-8 (POSF 4177)
- PSU Coal-Based Fuel (POSF 4765)
- JP-8+100 (6hr)

Parameters:
- Pressure (P) = 550 psig
- Flow: 10 ml/min
- OD: 0.125”
- ID: 0.085”

Graph showing carbon deposition and average wall temperature over axial distance.
What Did We Accomplish?

- Development of a coal-based “universal” jet fuel that
 - meets or exceeds specifications for JP-8 (Air Force) and Jet-A (civilian),
 - has the high flash point of JP-5 (Navy),
 - has the high thermal stability of JP-7 (for the SR-71 Blackbird) and
 - has the high volumetric energy density of JP-10 or RJ-5 (missile fuel).
- And…
JP-900 as fuel for CI engines

- It should be adequate diesel fuel, but may require some change in injection timing or addition of a cetane improver.

- Prototype JP-900 was successfully tested in a diesel-engine truck for 550 km, and another 550 km in a 1:3 blend with petro-diesel. No observable differences in performance compared to operation on petro-diesel.
JP-900 as Fuel for SOFCs

- Preliminary tests show comparable behavior for JP-900 and JP-8 fed “straight” to solid-oxide fuel cell.
- At 973 K, current density 0.2 A/cm², JP-900 produces 0.40 V vs. 0.48 for JP-8.
- Under same conditions, H₂ produces 0.89 V, but—running on JP-900 eliminates the need for reforming and gas separation.
Where Are We Going?

“Prediction is very difficult, especially about the future”

—— Niels Bohr
Lessons Learned

✓ Read widely.
✓ Record your ideas, no matter how wild or crazy they might seem at first.
✓ **DO NOT !!!!** be afraid of tackling the unknown.
✓ Have a “plan B” (C, D….)
✓ Leapfrog along parallel paths
✓ And, listen to the experts…. (once in a while)
Acknowledgments

- Funding from the United States Air Force and the Department of Energy.
- The Penn State “Jet Fools,” who did all the work.
- Susan Grimm and Carmen Scialabba.